A far-infrared balloon-borne polarization experiment

Jonathan Aumont

IRAP — Toulouse, France

J.-Ph. Bernard (PI), A. Mangilli, A. Hughes, G. Foënard, I. Ristorcelli, G. De Gasperis, H. Roussel, on behalf of the PILOT Collaboration

COSPAR-18 - Pasadena - July 20th 2018

PILOT

1.2 THz far-infrared polarization experiment

- ★ Reveal the structure of the magnetic field in our Galaxy and nearby galaxies
- ★ Characterize the geometric and magnetic properties of the dust grains
- **★** Understand polarized foregrounds
- ★ Complete the Planck observations at a higher frequency where the dust polarization has never been observed over large sky regions

PILOT – Instrument

- * Multiplexed bolometer arrays with a total of 2048 detectors at 240 μm (1249 GHz), 2' resolution
- \star Observations at more than 2 HWP angles to reconstruct the Stokes parameters *I*, *Q*, *U*
- ★ Detectors cooled down to 0.3 K through closed-cycle ³He fridge
- ★ NEP $\sim 4 \times 10^{-16} \text{ W/Hz}^{1/2}$
- ★ Control of systematics and detector response at 1% level

PILOT — 2nd flight

PILOT – 2nd flight

April 16th, 2017 from Alice Springs, Australia

★ Total flight time: 33.5 h

★ Scientific data: 23.8 h

★ Ceiling altitude: 32-40 Km

Galactic plane, 1.7 h, 7.1 %

Star forming regions, 9.9 h, 41.6 %

Galaxies, 6.1 h, 25.6 %

Diffuse field, 4.8 h, 20.2 %

Planets, 0.8 h, 3.5 %

Calibrations in all these scenes, 1.2 h, 5%

Note: most of these sources are not observable in balloon from South Pole (e.g. BLASTPol, SPIDER)

PILOT – Scanning strategy

★ In-flight good optical quality and nominal resolution

- ★ In-flight good optical quality and nominal resolution
- ★ In-flight background has a similar shape but is a factor ~2 stronger than ground measurements. Polarized at 4-10 % level
- ★ Variation of the detector responses due to polarized background & atmosphere variations. Modelled and corrected to better than 2 %

- ★ In-flight good optical quality and nominal resolution
- ★ In-flight background has a similar shape but is a factor ~2 stronger than ground measurements. Polarized at 4-10 % level
- ★ Variation of the detector responses due to polarized background & atmosphere variations. Modelled and corrected to better than 2 %
- ★ Pointing offset varies during flight. Pointing model constructed from elevation + temperatures and Herschel comparison, better than 1'
- **\star** Spurious polarization measured on Jupiter of $\sim 3 \%$

- ★ In-flight good optical quality and nominal resolution
- ★ In-flight background has a similar shape but is a factor ~2 stronger than ground measurements. Polarized at 4-10 % level
- ★ Variation of the detector responses due to polarized background & atmosphere variations. Modelled and corrected to better than 2 %
- ★ Pointing offset varies during flight. Pointing model constructed from elevation + temperatures and Herschel comparison, better than 1′
- ★ Spurious polarization measured on Jupiter of ~ 3 %
- ★ In-flight white noise levels as expected; noise stability over the whole flight
- + Significant improvements in ongoing analyses

PILOT — Preliminary polarization maps

- \star Stokes parameters *I*, *Q* and *U* in the L0 Galactic plane region
- ★Strong signal but low polarization fraction

PILOT – Comparison to Planck

$$\psi = \frac{1}{2} \cdot \operatorname{atan}\left(\frac{U}{Q}\right)$$

[The PILOT Collaboration, Mangilli et al. 2018 in prep.]

PILOT — Comparison to Planck

$$\psi = \frac{1}{2} \cdot \operatorname{atan}\left(\frac{U}{Q}\right)$$

PILOT — Comparison to Planck

$$\psi = \frac{1}{2} \cdot \operatorname{atan}\left(\frac{U}{Q}\right)$$

PILOT — Direction of the magnetic field

PILOT – "BICEP" region

PILOT – "BICEP" region

★ 4.8 h of data during flight2

★ BICEP field observed
with 4 tiles, each of
them being observed
at least twice with
2 different HWP
positions

★ Goal signal to noise ratio of ~20 on the polarized intensity integrated over the whole field

★ Unique data for constraining the SED or for correlation analyses in CMB observations

PILOT — Legacy

- *** copiLot**: modification of **PILOT** will allow very accurate measurements of C+ (158 μ m) total intensity. Dark molecular gas distribution in solar neighborhood, nearby galaxies. Submitted to CNES
- **★ IDS** (Inflation and Dust Surveyor): CMB *B*-modes + dust, proposed to NASA 2018. Contribution to provide **PILOT** attitude control + internal calibration source
- **★ SPICA-Pol**: polarized instrument on **SPICA**. Design and science case strongly inspired from **PILOT**. Accepted in pre-phaseA/0.
- **★ BOOST** proposal (IRAP) to lower detector temperature to 150 mK. Increase in sensitivity by 2.7 for **PILOT**, up to 14 for **COPILOT**

PILOT – Summary

- ★Operational and instrumental success of the PILOT two flights
- ★ Unique experiment: observation of the dust polarization at 1.2 THz over large regions of the sky relevant for cosmology
- **★**PILOT legacy for future instruments
- ★Data analysis in progress. No showstopper for the moment but we are a small team!

- BACKUP -

PLOT – Improvements after 1st flight

- + arrays #1 and #3 were repaired
 - * ground tests: array #3 ok, arrays #1 and #5 not working in flight: arrays #1, #3 and #5 not working: -17%
- + autonomy tests at 300 mK accomplished
 - ★ detectors were operated 20 mK lower than flight#1 (305 mK): +26%
 - ★ in-flight autonomy was longer than the long flight (>33.5 hr)
- + Field stop size increased to avoid edge effects in polarization
 - ★ polarization now ok everywhere: gain of 0.6 arrays: +10%
- + Longer flight (flight#1: 14.8hr, flight#2: 23.8 hr): +60%
- + Front baffle thermal insulation was re-designed
 - * no deterioration observed in flight. No sign of external straylight.
- + More efficient observing strategy implemented
 - * scans at varying elevation (better control of response variations + de-stripping)
 - **★** region of interest mapping (saves **20**% of of target time)
- = Total: +100%
- ★ important qualitative improvements: less straylight, more scan directions more HWP positions, more strong pointing sources

PILOT – "BICEP" region

